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Abstract

In this paper, the plane elasticity problem of an arbitrarily oriented crack in a FGM layer bonded to a homogeneous
half-plane is considered. The problem is modeled by assuming that the elastic properties of the FGM layer are expo-
nential functions of the thickness coordinate and are continuous at the interface of the FGM layer and the half-plane.

The Fourier transform technique is used to reduce the problem to the solution of a system of Cauchy-type singular
integral equations, which are solved numerically. The stress intensity factors are computed for various crack orienta-
tions, crack locations and material parameters. The results show that crack length, crack orientation and the non-
homogeneity parameter of the strip material have significant effect on the fracture of the FGM layer.
� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

In the recent past, there has been a strong increase in interest in functionally graded materials (FGMs).
The idea of Functionally Graded Materials initially came from the need of more efficient combustion pro-
cess in many high temperature aerospace applications such as turbines, compressors and combustion cham-
bers. FGMs are essentially two-phase particulate composites whose composition, microstructure and
properties vary gradually. Most FGMs are made from ceramics and metals. Ceramics provide thermal
and corrosion resistance while metals provide the necessary mechanical toughness and heat conductivity.
The volume fractions of the constituents in an FGM usually vary continuously from 100% ceramic at
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the surface to 0% at the interface continuously. The conditions for both high temperature and high tough-
ness can then be met simultaneously. FGMs can be tailored to meet the rigorous requirements encountered
in practice through the design of their constituents. They have great potential for applications in safety-criti-
cal structures such as nuclear fusion reactors, aircraft fuselages, microelectronic devices and biomaterials,
but the greatest area of focus and initial emphasis appear to be in thermal barrier protection for turbines
engines, etc. in high temperature environments.

From the mechanical point of view, FGMs are unique because their mechanical properties vary spa-
tially. This distinctive feature that makes FGMs such promising candidates for advanced technological
applications, happens to create enormous difficulties for those who want to analytically study the fracture
behavior of FGMs. It is well known that if the mechanical properties of the material are not constant, the
governing elasticity equations become partial differential equations with variable coefficients, which com-
plicate the analysis significantly. Except for few idealized cases, most crack problems for FGMs are not
amenable to analytical treatments because of their intrinsic complexities.

Some fracture problems of FGMs have been investigated in the past decade. Delale and Erdogan (1983)
studied mode I crack problem in an infinite non-homogeneous plane, and found that the effect of the
Poisson�s ratio on the stress intensity factors is negligible. Konda and Erdogan (1994) solved the more gen-
eral case of mixed mode crack problem in FGMs. Erdogan and Wu (1997) investigated the mode I crack
problem in a FGM strip, especially for edge cracks. The mode I crack parallel to the boundary of an infinite
strip was solved by El-Borgi et al. (2000), with the Young�s modulus varying exponentially in an arbitrary
direction. Long and Delale (2004) studied the general problem for an unconstrained FGM layer containing
an arbitrarily oriented crack.

Cracks in multilayer materials with at least one layer being nonhomogeneous are studied less extensively,
and most of these works are limited to cracks in the homogeneous planes or interfacial region (Chen and
Erdogan, 1996; Choi, 1996; Choi, 2001; Delale, 1985; Delale and Erdogan, 1988a,b; Erdogan, 1985;
Erdogan et al., 1991; Erdogan et al., 1991; Schovanec and Walton, 1988; Shbeeb and Binienda, 1999; Ueda,
2001). Choi (2001) studied an arbitrarily oriented crack located in a homogeneous semi-infinite substrate
that is bonded to a surface layer through a nonhomogeneous interfacial layer, which is the closest to the
problem studied in the current paper.

In this paper, the more general problem of an arbitrarily oriented crack in a FGM layer bonded to a
homogeneous half-plane is studied. The problem is a model for a functionally graded TCB bonded to a
substrate. First, some auxiliary functions are introduced and then the problem is formulated in terms of
a system of Cauchy-type singular integral equations. These equations are solved numerically to obtain
the stress intensity factors at the crack tips.

To make the problem mathematically tractable, the Young�s modulus of the material is assumed to vary
exponentially in the thickness coordinate. The Poisson�s ratio is assumed to be constant.
2. The formulation

The crack problem under consideration is an FGM strip (material 1 in Fig. 1) of thickness h containing
an embedded finite crack on the y 0 = 0 plane; the strip is bonded to a homogeneous half-plane (material 2
in Fig. 1). In the FGM strip, the material properties vary exponentially in the thickness direction. The
Poisson�s ratio m is constant and the shear modulus is defined by:
lðxÞ ¼ l1e
dx or lðx0; y 0Þ ¼ l1e

bx0þcy0 ð1Þ

where,
b ¼ d cos h; c ¼ �d sin h: ð2Þ
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Fig. 1. Crack geometry of the problem.
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The Lame constant k(x,y) can be written as
kðx; yÞ ¼ 3� j
j� 1

l1e
bx0þcy0 ð3Þ
with
j ¼
3� 4m for plane strain

3� m
1þ m

for plane stress

8<
: ð4Þ
Here, d is a constant that describes the nonhomogeneity of the FGM. To simplify the discussion, we assume
d P 0. l1 is the share modulus at x = 0. h is the angle between the crack line and x.

The material properties of the half-plane are the same as those of the FGM layer at the interface
EðxÞ ¼ E1; lðxÞ ¼ l1 ð5Þ

The problem will be solved under the following boundary and continuity conditions
ry0 ðx0;þ0Þ ¼ ry0 ðx0;�0Þ

sx0y0 ðx0;þ0Þ ¼ sx0y0 ðx0;�0Þ

)
0 < x < h ð6Þ

rxðþ0; yÞ ¼ rxð�0; yÞ

sxyðþ0; yÞ ¼ sxyð�0; yÞ

)
�1 < y < 1 ð7Þ

rxðh; yÞ ¼ sxyðh; yÞ ¼ 0 �1 < y < 1 ð8Þ

mðx0;þ0Þ ¼ vðx0;�0Þ

uðx0;þ0Þ ¼ uðx0;�0Þ

)
x0 < a or x0 > b and 0 < x < h ð9Þ

mðþ0; yÞ ¼ vð�0; yÞ

uðþ0; yÞ ¼ uð�0; yÞ

)
�1 < y < 1 ð10Þ
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ry0 ðx0; 0Þ ¼ p1ðx0Þ
sx0y0 ðx0; 0Þ ¼ p2ðx0Þ

�
a < x0 < b ð11Þ
Here, p1(x
0) and p2(x

0) are given crack surface tractions, which can be determined by solving the elasticity
problem for the uncracked strip under the given external loads.

2.1. Basic solution for the FGM layer

The solution of the FGM layer is expressed as the sum of two states of strain as u01ðx0; y0Þ; m01ðx0; y 0Þ and
u1(x,y) and m1(x,y) where the coordinates (x 0,y 0) and (x,y) are defined in Fig. 1.

The governing equations for the FGM plane may be expressed as
ðjþ 1Þ o
2u01
ox02

þ ðj� 1Þ o
2u01
oy 02

þ 2
o
2m01

ox0oy0
þ bðjþ 1Þ ou

0
1

ox0
þ cðj� 1Þ ou01

oy0
þ ov01

ox0

� �
þ bð3� jÞ om

0
1

oy0
¼ 0

ðj� 1Þ o
2m01
ox02

þ ðjþ 1Þ o
2m01
oy02

þ 2
o2u01
ox0oy0

þ cð3� jÞ ou
0
1

ox0
þ bðj� 1Þ ou01

oy0
þ om01

ox0

� �
þ cðjþ 1Þ om

0
1

oy0
¼ 0

ð12Þ
Assuming, u01ðx0; y0Þ and v01ðx0; y0Þ as
u01ðx0; y 0Þ ¼
1

2p

Z 1

�1
Uðy0; aÞe�iax0 da

v01ðx0; y 0Þ ¼
1

2p

Z 1

�1
V ðy 0; aÞe�iax0 da

ð13Þ
Substituting expressions (13) into Eqs. (12) and after some manipulations, we get
Uðy0; aÞ ¼
X4

j¼1

mjF jðaÞenjy
0

V ðy 0; aÞ ¼
X4

j¼1

F jðaÞenjy
0 ð14Þ
where Fj(a) are unknown functions and mj (j = 1, . . . ,4) are given by
mj ¼
½2aiþ bðj� 3Þ�nj þ iacðj� 1Þ

ðj� 1Þn2j þ ðj� 1Þcnj � ðjþ 1Þðaþ ibÞa j ¼ 1; . . . ; 4 ð15Þ
while nj (j = 1, . . . ,4) are the roots of
½n2 þ cn� aðaþ ibÞ�2 þ 3� j
jþ 1

ðac� ibnÞ2 ¼ 0 ð16Þ
The values of nj are
n1 ¼ �D1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1 þ 4ða2 þ iaD2Þ
q

2
n2 ¼ �D3

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

3 þ 4ða2 þ iaD4Þ
q

2

n3 ¼ �D1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1 þ 4ða2 þ iaD2Þ
q

2
n4 ¼ �D3

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

3 þ 4ða2 þ iaD4Þ
q

2

ð17Þ
where
D1 ¼ cþ b

ffiffiffiffiffiffiffiffiffiffiffi
3� j
jþ 1

r
D3 ¼ c� b

ffiffiffiffiffiffiffiffiffiffiffi
3� j
jþ 1

r

D2 ¼ b� c

ffiffiffiffiffiffiffiffiffiffiffi
3� j
jþ 1

r
D4 ¼ bþ c

ffiffiffiffiffiffiffiffiffiffiffi
3� j
jþ 1

r ð18Þ
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Since u01 and v01 must vanish for x2 + y2 ! 1, we have
F 3ðaÞ ¼ F 4ðaÞ ¼ 0; y > 0

F 1ðaÞ ¼ F 2ðaÞ ¼ 0; y < 0
ð19Þ
Using generalized Hooke�s Law, we obtain
r0
x0 ðx0; y 0Þ ¼

l
2pðj� 1Þ

Z 1

�1

Xlþ1

j¼l

½�iamjð1þ jÞ þ njð3� jÞ�F jðaÞenjy
0�iax0 da

r0
y0 ðx0; y0Þ ¼

l
2pðj� 1Þ

Z 1

�1

Xlþ1

j¼l

½�iamjð3� jÞ þ njð1þ jÞ�F jðaÞenjy
0�iax0 da

s0x0y0 ðx0; y 0Þ ¼
l
2p

Z 1

�1

Xlþ1

j¼l

½njmj � ia�F jðaÞenjy
0�iax0 da

ð20Þ
where l = 1 for y > 0 and l = 3 for y < 0.
From the continuity conditions (6) and Eqs. (20), we find
F 3ðaÞ ¼ R1ðaÞF 1ðaÞ þ R2ðaÞF 2ðaÞ; F 4ðaÞ ¼ R3ðaÞF 1ðaÞ þ R4ðaÞF 2ðaÞ ð21Þ

where Rj(a) are known functions given in Appendix A.

We then introduce the following auxiliary functions:
g1ðx0Þ ¼
o

ox0
½u01ðx0;þ0Þ � u01ðx0;�0Þ�; a <j x0 j< b

g2ðx0Þ ¼
o

ox0
½v01ðx0;þ0Þ � v01ðx0;�0Þ�; a <j x0 j< b

ð22Þ
We can express Fj (j = 1, . . . ,4) in terms of these auxiliary functions as
F 1 ¼
Z 1

�1

½að3� jÞf22 þ ið1þ jÞf32�g1 þ ðif12 þ af42Þð1þ jÞg2
ð1þ jÞax0

eiat dt

F 2 ¼ �
Z 1

�1

½að3� jÞf21 þ ið1þ jÞf31�g1 þ ðif11 þ af41Þð1þ jÞg2
ð1þ jÞax0

eiat dt

F 3 ¼
Z 1

�1

½að3� jÞf24 þ ið1þ jÞf34�g1 þ ðif14 þ af44Þð1þ jÞg2
ð1þ jÞax0

eiat dt

F 4 ¼ �
Z 1

�1

½að3� jÞf23 þ ið1þ jÞf33�g1 þ ðif 13 þ af43Þð1þ jÞg2
ð1þ jÞax0

eiat dt

ð23Þ
where fi,j (i = 1, . . . ,4; j = 1, . . . ,4) are known functions given in Appendix A, and
x0 ¼ ðm1 � m2Þðm3 � m4Þðn1n2 þ n3n4Þ þ ðm1 � m4Þðm2 � m3Þðn2n3 þ n1n4Þ

� ðm1 � m3Þðm2 � m4Þðn1n3 þ n2n4Þ ð24Þ
Substituting Fj (j = 1, . . . ,4) back into Eq. (20), we can express r0
x0 ; r0

y0 and s0x0y0 in terms of g1 and g2, for
y 0 > 0, as
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rð1Þ
x0 ðx0; y0Þ ¼

lðx0; y 0Þ
2pð1þ jÞ

Z b

a

X2

j¼1

hð1Þ1j ðx0; y0; tÞgjðtÞdt

rð1Þ
y0 ðx0; y0Þ ¼

lðx0; y 0Þ
2pð1þ jÞ

Z b

a

X2

j¼1

hð1Þ2j ðx0; y0; tÞgjðtÞdt

sð1Þx0y0 ðx0; y0Þ ¼
lðx0; y0Þ
2pð1þ jÞ

Z b

a

X2

j¼1

hð1Þ3j ðx0; y 0; tÞgjðtÞdt

ð25Þ
where
hð1Þkj ðx0; y 0; tÞ ¼
Z 1

�1
Kð1Þ

kj ðy0; aÞeiaðt�x0Þ da; k ¼ 1; 2; j ¼ 1; 2 ð26Þ
and Kð1Þ
kj ðy0; aÞ ðk ¼ 1; 2; j ¼ 1; 2Þ are known functions given in Appendix A.

Similarly, when y 0 < 0, r0
x0 ; r0

y0 and s0x0y0 can be written as
rð2Þ
x0 ðx0; y0Þ ¼

lðx0; y 0Þ
2pð1þ jÞ

Z b

a

X2

j¼1

hð2Þ1j ðx0; y0; tÞgjðtÞdt

rð2Þ
y0 ðx0; y0Þ ¼

lðx0; y 0Þ
2pð1þ jÞ

Z b

a

X2

j¼1

hð2Þ2j ðx0; y0; tÞgjðtÞdt

sð2Þx0y0 ðx0; y0Þ ¼
lðx0; y0Þ
2pð1þ jÞ

Z b

a

X2

j¼1

hð2Þ3j ðx0; y 0; tÞgjðtÞdt

ð27Þ
where
hð2Þkj ðx0; y 0; tÞ ¼
Z 1

�1
Kð2Þ

kj ðy0; aÞeiaðt�x0Þ da; k ¼ 1; 2; j ¼ 1; 2;
and Kð2Þ
kj ðy0; aÞðk ¼ 1; 2; j ¼ 1; 2Þ are known functions given in the Appendix A.

In the (x,y) coordinate system, the Navier�s equations for the FGM layer may be expressed as
ðjþ 1Þ o
2u1
ox2

þ ðj� 1Þ o
2u1
oy2

þ 2
o2v1
oxoy

þ dðjþ 1Þ ou1
ox

þ dð3� jÞ ov1
oy

¼ 0

ðj� 1Þ o
2v1
ox2

þ ðjþ 1Þ o
2v1
oy2

þ 2
o2u1
oxoy

þ dðj� 1Þ ov1
ox

þ ou1
oy

� �
¼ 0

ð28Þ
Assuming
u1ðx; yÞ ¼
1

2p

Z 1

�1
qAðaÞepxe�iay da

v1ðx; yÞ ¼
1

2p

Z 1

�1
AðaÞepxe�iay da

ð29Þ
and substituting Eqs. (29) into (28), we obtain the characteristic equation as
½ðjþ 1Þp2 � ðj� 1Þa2 þ dðjþ 1Þp�q� ia½2p þ dð3� jÞ� ¼ 0 ðaÞ

ðj� 1Þp2 þ dðj� 1Þp � ðjþ 1Þa2 � iaq½2p þ dðj� 1Þ� ¼ 0 ðbÞ
ð30Þ
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solving Eq. (30), we have:
qj ¼
ðj� 1Þðpj þ dÞpj � ðjþ 1Þa2

ai½2pj þ dðj� 1Þ� ; j ¼ 1; . . . ; 4 ð31Þ
Defining x ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� jÞ=ð1þ jÞ

p
, and using Eq. (31), Eq. (30) yield the roots p as
p1 ¼ � d
2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4a2 þ 4ixa

p
p2 ¼ � d

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4a2 � 4ixa

p
p3 ¼ � d

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4a2 þ 4ixa

p
p4 ¼ � d

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4a2 � 4ixa

p
ð32Þ
Thus, Eqs. (29) become
u1ðx; yÞ ¼
1

2p

Z 1

�1

X4

j

qjAjðaÞepjxe�iay da

v1ðx; yÞ ¼
1

2p

Z 1

�1

X4

j

AjðaÞepjxe�iay da

ð33Þ
Then, the corresponding stresses are obtained as
rð3Þ
x ¼ lðx; yÞ

2pðj� 1Þ

Z 1

�1

X4

j

½ð1þ kÞpjqj þ ðj� 3Þia�AjðaÞepjx�iay da

rð3Þ
y ¼ lðx; yÞ

2pðj� 1Þ

Z 1

�1

X4

j

½�ð1þ kÞiaþ ð3� jÞpjqj�AjðaÞepjx�iay da

sð3Þxy ¼ lðx; yÞ
2p

Z 1

�1

X4

j

½pj � iaqj�AjðaÞepjx�iay da

ð34Þ
The stress state at a given point in the FGM plane can be expressed as the sum of the stresses given by Eqs.
(34) and Eqs. (25) or (27), depending on the sign of y 0 at that point.

From the free boundary conditions (8) of the problem at x = h, we have
X4

j

½ð1þ kÞpjqj þ ðj� 3Þia�AjðaÞepjh ¼
1� j

2pð1þ jÞ
X2

j¼1

Z b

a
Q1jða; tÞgjðtÞdt ð35Þ
where
Q1jða; tÞ ¼
X2

i¼1

fnðiÞ1j ða; tÞcos2hþ nðiÞ2j ða; tÞsin
2h� 2nðiÞ3j ða; tÞ cos h sin hg ð36Þ

nð1Þkj ða; tÞ ¼
Z 1

�1

Z 1

h tan h
Kð1Þ

kj ðy cos h� h sin h; qÞeiqðt�y sin h�h cos hÞþiay dy dq

nð2Þkj ða; tÞ ¼
Z 1

�1

Z h tan h

�1
Kð2Þ

kj ðy cos h� h sin h; qÞeiqðt�y sin h�h cos hÞþiay dy dq

ð37Þ
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and
X4

j

½pj � iaqj�AjðaÞepjh ¼
�1

2pð1þ jÞ
X2

j¼1

Z b

a
Q2jða; tÞgjðtÞdt ð38Þ
where
Q2jða; tÞ ¼
X2

i¼1

ðcos2h� sin2hÞnðiÞ3j ða; tÞ � ½nðiÞ2j ða; tÞ � nðiÞ1j ða; tÞ� sin h cos h
n o

ð39Þ
2.2. The solution for the half-plane

For the half-plane, Navier�s equations in terms of displacements u2 and v2 may be expressed as
ðjþ 1Þ o
2u2
ox2

þ ðj� 1Þ o
2u2
oy2

þ 2
o2v2
oxoy

¼ 0

ðj� 1Þ o
2v2
ox2

þ ðjþ 1Þ o
2v2
oy2

þ 2
o
2u2

oxoy
¼ 0

ð40Þ
For y < 0, assuming u2(x,y) and v2(x,y) in the following form:
u2ðx; yÞ ¼
1

2p

Z 1

�1
H 1ðx; aÞe�iay da

v2ðx; yÞ ¼
1

2p

Z 1

�1
H 2ðx; aÞe�iay da

ð41Þ
and substituting into (40), we get
u2ðx; yÞ ¼
i
2p

Z 1

�1

a
j a j G1ðaÞ þ x� j

j a j

� �
G2ðaÞ

� �
ejajx�iay da

v2ðx; yÞ ¼
1

2p

Z 1

�1
G1ðaÞ þ xG2ðaÞejajx�iay da

ð42Þ
From generalized Hooke�s law, the stresses for the half-plane are obtained as
r2x ¼
l1i

2p

Z 1

�1
2aðG1 þ xG2Þ �

a
j a j ð1þ jÞG2

� �
ejajx�iay da

r2y ¼ � l1i

2p

Z 1

�1
2aðG1 þ xG2Þ þ

a
j a j ð3� jÞG2

� �
ejajx�iay da

s2xy ¼
l1

2p

Z 1

�1
2 j a j ðG1 þ xG2Þ þ ð1� jÞG2½ �ejajx�iay da

ð43Þ
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3. The integral equations

Using the continuity conditions (7) and (10), we get following relations:
X4

j

½ð1þ kÞpjqj þ ðj� 3Þia�AjðaÞ � i 2aG1 �
a

j a j ð1þ jÞG2

� �
ðj� 1Þ

¼ 1� j
2pð1þ jÞ

X2

j¼1

Z b

a
Q3jða; tÞgjðtÞdt ð44Þ

X4

j

½pj � iaqj�AjðaÞ � ½2 j a j G1 þ ð1� jÞG2� ¼
�1

2pð1þ jÞ
X2

j¼1

Z b

a
Q4jgjðtÞdt ð45Þ

X4

j

qjAjðaÞ �
ai
j a j G1ðaÞ �

j
j a jG2ðaÞ

� �
¼

X2

j¼1

Z b

a
Q5jða; tÞgjðtÞdt ð46Þ

X4

j

AjðaÞe�iay � G1ðaÞ ¼
X2

j¼1

Z b

a
Q6jða; tÞgjðtÞdt ð47Þ
where Qkj(a, t) (k = 3, . . . ,6; j = 1,2) are known functions shown in Appendix A.
With Eqs. (35), (38), (44), (45), (46) and (47) we have six equations for the six unknowns Aj(j = 1, . . . ,4)

and Gj(j = 1,2):
X4

j

½ð1þ kÞpjqj þ ðj� 3Þia�AjðaÞepjh ¼
1� j

2pð1þ jÞ
X2

j¼1

Z b

a
Q1jða; tÞgjðtÞdt

X4

j

½pj � iaqj�AjðaÞepjh ¼
�1

2pð1þ jÞ
X2

j¼1

Z b

a
Q2jða; tÞgjðtÞdt

X4

j

½ð1þ kÞpjqj þ ðj� 3Þia�AjðaÞ � i 2aG1 �
a

j a j ð1þ jÞG2

� �
ðj� 1Þ

¼ 1� j
2pð1þ jÞ

X2

j¼1

Z b

a
Q3jða; tÞgjðtÞdt

X4

j

½pj � iaqj�AjðaÞ � ½2 j a j G1 þ ð1� jÞG2� ¼
�1

2pð1þ jÞ
X2

j¼1

Z b

a
Q4jgjðtÞdt

X4

j

qjAjðaÞ �
ai
j a j G1ðaÞ �

j
j a jG2ðaÞ

� �
¼

X2

j¼1

Z b

a
Q5jða; tÞgjðtÞdt

X4

j

AjðaÞe�iay � G1ðaÞ ¼
X2

j¼1

Z b

a
Q6jða; tÞgjðtÞdt

ð48Þ
Solving Eqs. (48) we can obtain Aj(a) (j = 1, . . . ,4) and G1(a), G2(a).
From the boundary conditions
ry1ðx1;þ0Þ ¼ p1ðx1Þ; sx1y1ðx1;þ0Þ ¼ p2ðx1Þ ða < x < bÞ ð49Þ
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where p1(x1) and p2(x1) are the crack surface tractions, we obtain
rð1Þ
y1
ðx1; 0Þ þ sin2hrð3Þ

x ðx1 cos h; x1 sin hÞ þ cos2hrð3Þ
y ðx1 cos h; x1 sin hÞ

� 2 sin h cos hsð3Þxy ðx1 cos h; x1 sin hÞ ¼ p1ðx1Þ
auð1Þx1y1

ðx1; 0Þ þ sð3Þxy ðx1 cos h; x1 sin hÞðcos2h� sin2hÞ
þ sin h cos h½rð3Þ

y ðx1 cos h; x1 sin hÞ � rð3Þ
x ðx1 cos h; x1 sin hÞ� ¼ p2ðx1Þ

ð50Þ
To obtain the asymptotic behavior of the stresses, first we rewrite the first equation of (50) as
lðx1; 0Þ
2pð1þ jÞ

Z b

a

X2

i¼1

hð1Þ2j ðx1; tÞgiðtÞdt þ
lðx1 cos h; x1 sin hÞ

2pðj� 1Þ

Z 1

�1

X4

j

½ð1þ kÞpjqj
�

þðj� 3Þia�sin2hþ ½�ð1þ kÞiaþ ð3� jÞpjqj�cos2h
�2 sin h cos hðj� 1Þ½pj � iaqj�

�
AjðaÞepjx1 cos h�iax1 sin h da ¼ p1ðx1Þ ð51Þ
Since the asymptotic value of K21 and K22 for a ! 1 are
K1
21 ¼ 0

K1
22 ¼ �2i

j a j
a

e�jajy ð52Þ
Eq. (51) yields,
1

p

Z b

a

g2ðtÞ
t � x1

þ
X2

j¼1

½kð1Þ1j ðx1; tÞ þ kð1Þ2j ðx1; tÞ�gjðtÞ
( )

dt ¼ ð1þ jÞ
2lðx1; 0Þ

p1ðx1Þ ð53Þ
with the kernels
kð1Þ11 ðx1; tÞ ¼
1

4
hð1Þ21 ðx1; 0; tÞ

kð1Þ12 ðx1; tÞ ¼
1

4

Z 1

�1
½Kð1Þ

22 ð0; aÞ � lim
a!1

Kð1Þ
22 ð0; aÞ�eiaðt�x1Þ da

kð2Þ2j ðx1; tÞ ¼
ð1þ jÞ
4ðj� 1Þ

Z 1

�1

X4

i

f½ð1þ kÞpiqi þ ðj� 3Þia�sin2h

þ ½�ð1þ kÞiaþ ð3� jÞpiqi�cos2h
� 2 sin h cos hðj� 1Þ½pi � iaqi�gCijða; tÞepix1 cos h�iax1 sin h da

ð54Þ
Similarly, the second equation of Eq. (50) becomes
1

p

Z b

a

g1ðtÞ
t � x1

þ
X2

j¼1

½kð2Þ1j ðx1; tÞ þ kð2Þ2j ðx1; tÞ�gjðtÞ
( )

dt ¼ ð1þ jÞ
2lðx1; 0Þ

p2ðx1Þ ð55Þ
where
kð2Þ12 ðx1; tÞ ¼
1

4
hð1Þ32 ðx1; 0; tÞ

kð2Þ11 ðx1; tÞ ¼
1

4

Z 1

�1
½Kð1Þ

31 ð0; aÞ � lim
a!1

Kð1Þ
31 ð0; aÞ�eiaðt�x1Þ da

kð2Þ2i ðx1; tÞ ¼
ð1þ jÞ
4ðj� 1Þ

Z 1

�1

X4

j

ðcos2h� sin2hÞðj� 1Þ½pj � iaqj�
�

þ2 sin h cos hð1� jÞ½iaþ pjqj�
�
Cjiða; tÞepjx1 cos h�iax1 sin h da

ð56Þ
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From Eqs. (22), we obtain the single valuedness conditions to complete the formulation of the problem
Z b

a
gjðtÞdt ¼ 0; j ¼ 1; 2 ð57Þ
4. The numerical solution

To obtain stress intensity factors at the crack tips, the Cauchy-type singular integral equations are solved
numerically.

First, we define
t ¼ b� a
2

r þ bþ a
2

x1 ¼
b� a
2

sþ bþ a
2

g1ðtÞ ¼ /1ðrÞ g2ðtÞ ¼ /2ðrÞ
p1ðx1Þ ¼ f1ðsÞ p2ðx1Þ ¼ f2ðsÞ
lðx1; 0Þ ¼ mðs; 0Þ

qðnÞij ðs; rÞ ¼
b� a
2

kðnÞij ðx1; tÞ ði ¼ 1; 2; j ¼ 1; 2; n ¼ 1; 2Þ

ð58Þ
Then, the integral equations (53) and (55) can be normalized as
1

p

Z 1

�1

/2ðrÞ
r � s

þ
X2

j¼1

½qð1Þ1j ðs; rÞ þ qð1Þ2j ðs; rÞ�/jðrÞ
( )

dr ¼ ð1þ jÞ
2mðs; 0Þ f1ðsÞ ð59Þ

1

p

Z 1

�1

/1ðrÞ
r � s

þ
X2

j¼1

½qð2Þ1j ðs; rÞ þ qð2Þ2j ðs; rÞ�/jðrÞ
( )

dr ¼ ð1þ jÞ
2mðs; 0Þ f2ðsÞ ð60Þ
The fundamental solution of these equations is of the form given by Golberg (1990) and Peters (1963)
wðrÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p ð61Þ
and thus the unknowns /1(r) and /2(r) may be expressed in terms of Chebyshev polynomials of the first
kind as follows:
/1ðrÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p

XN
n¼0

cð1Þn T nðrÞ � 1 < r < 1

/2ðrÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p

XN
n¼0

cð2Þn T nðrÞ � 1 < r < 1

ð62Þ
where cð1Þn and cð2Þn (n = 0,1,2 . . .) are unknown constants. Using the single valuedness condition (57) and
considering the orthogonality conditions of Tn(r), it can be shown that
cð1Þ0 ¼ 0

cð2Þ0 ¼ 0
ð63Þ
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Substituting (62) into (59) and (60), we obtain
X1
n¼1

cð1Þn Un�1ðsÞ þ
1

p

X1
n¼1

Z 1

�1

X2

j¼1

qð1Þ1j ðs; rÞ þ qð1Þ2j ðs; rÞ
h i

cðjÞn

T nðrÞffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p dr

¼ ð1þ jÞ
2mðs; 0Þ f1ðsÞ � 1 < s < 1

X1
n¼1

cð2Þn Un�1ðsÞ þ
1

p

X1
n¼1

Z 1

�1

X2

j¼1

qð2Þ1j ðs; rÞ þ qð2Þ2j ðs; rÞ
h i

cðjÞn

T nðrÞffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p dr

¼ ð1þ jÞ
2mðs; 0Þ f2ðsÞ � 1 < s < 1

ð64Þ
Eq. (64) can be solved by truncating the series and choosing the collocation points sn as
T N ðsnÞ ¼ 0 sn ¼ cos ð2n� 1Þ p
2N

	 

n ¼ 1; . . . ;N ð65Þ
After determining cð1Þn and cð2Þn , the stress intensity factors at the crack tips may be expressed as (Konda and
Erdogan, 1994)
k1ðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
b� a
2

r
2lða; 0Þ
1þ j

X1
n¼1

ð�1Þncð1Þn

k2ðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
b� a
2

r
2lða; 0Þ
1þ j

X1
n¼1

ð�1Þncð2Þn

k1ðbÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
b� a
2

r
2lðb; 0Þ
1þ j

X1
n¼1

cð1Þn

k2ðbÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
b� a
2

r
2lðb; 0Þ
1þ j

X1
n¼1

cð2Þn

ð66Þ
and the crack surface openings as
uðx1;þ0Þ � uðx1;�0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða02 � x02Þ

p X1
n¼1

1

n
cð1Þn Un�1ðx0=a0Þ

vðx1;þ0Þ � vðx1;�0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða02 � x02Þ

p X1
n¼1

1

n
cð2Þn Un�1ðx0=a0Þ

ð67Þ
where
a0 ¼ b� a
2

ð68Þ
is the half-crack length and
x0 ¼ x� bþ a
2

ð69Þ
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5. Results and discussion

Different crack lengths and orientations are used to calculate the stress intensity factors at the crack tips.
In all cases, the loading is uniform strain at infinity, that is:
Fig. 2.
FGM
eyyðx;�1Þ ¼ e0 ð70Þ

The crack surface tractions for this loading can be written as
p1ðx1; 0Þ ¼ � 8l1e
dx cos h

1þ j
e0cos

2h

p2ðx1; 0Þ ¼ � 8l1e
dx cos h

1þ j
e0 cos h sin h

ð71Þ
For various crack lengths, the calculations are carried out with h varying from 0� to near 90�. All the stress
intensity factors are normalized by
K0 ¼ r0

ffiffiffiffi
a0

p
ð72Þ
where r0 is the normalizing stress and is defined as
r0 ¼
8l1

1þ j
e0 ð73Þ
Fig. 2 shows the stress intensity factors for a crack with a 0/h = 0.05 and d = 0.03. The solid lines indicate
the stress intensity factors for an inclined crack in an FGM strip bonded to a homogeneous half-plane,
while the dashed lines show the stress intensity factors for a crack in an FGM strip. As can be seen in
Fig. 2, in this case, the difference between the two sets of results is negligible. This is largely due to the fact
that the crack length is very small compared to the thickness of the strip. Thus, the perturbation brought
upon by the homogeneous half-plane is not significant. However, as will be shown later, this effect will be-
come more pronounced as the crack length increases.
0.0 0.1 0.2 0.3 0.4 0.5
Angle: θ/π

0
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3
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K1(a)

K2(b)

K2(a)

Inclined crack in a FGM strip 
bonded to a semi-infinite
homogeneous plane

Inclined crack in a FGM strip

0/ KK

Variation of the normalized stress intensity factors K/K0 with h/p for an embedded inclined crack in an FGM strip and an
strip bonded to a homogeneous half-plane under uniform strain, a 0/h = 0.05.
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Figs. 3–6 shows the stress intensity factors for cracks with varying crack lengths, for a 0/
h = 0.10,0.15,0.20 and 0.25, respectively. It can be observed that as the crack length increases, the differ-
ence between the stress intensity factors for an FGM strip and an FGM strip bonded to a homogeneous
half-plane becomes more perceptible. But the trend of the variation of the intensity factors with respect
to the crack angle remains the same.
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Inclined crack in a FGM strip 
bonded to a semi-infinite
homogeneous plane

Inclined crack in a FGM strip

0/ KK

Fig. 3. Variation of the normalized stress intensity factors K/K0 with h/p for an embedded inclined crack in an FGM strip and an
FGM strip bonded to a homogeneous half-plane under uniform strain, a 0/h = 0.10.
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Fig. 4. Variation of the normalized stress intensity factors K/K0 with h/p for an embedded inclined crack in an FGM strip and an
FGM strip bonded to a homogeneous half-plane under uniform strain, a 0/h = 0.15.
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Fig. 6. Variation of the normalized stress intensity factors K/K0 with h/p for an embedded inclined crack in an FGM strip and an
FGM strip bonded to a homogeneous half-plane under uniform strain, a 0/h = 0.25.
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Fig. 5. Variation of the normalized stress intensity factors K/K0 with h/p for an embedded inclined crack in an FGM strip and an
FGM strip bonded to a homogeneous half-plane under uniform strain, a 0/h = 0.20.
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From the results shown above, we can reach several important conclusions:

1. The square-root nature of the stress singularity is well maintained at the crack tips of cracks in FGM layer.
2. The stress intensity factors for mode I crack (K1(a) andK1(b)) decrease when increasing h, while the stress

intensity factors for mode II crack, first increase and then decrease as the crack angle increases. The
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stress intensity factors (K1)s are always greater than (K2)s in the beginning, when the problem is mostly
under mode I deformation. After h increases to a given point, (K1)s become smaller than (K2)s, because
mode II loading starts to dominate. This trend is not affected by the length of the crack.

3. Due to the existence of the nonhomogeneous nature of the material, for the parameter chosen the stress
intensity factors increase significantly when the crack becomes longer.

4. In most cases, mode I fracture introduces larger stress concentration at crack tips. When mode II frac-
ture dominates, the magnitude of the stress concentration is generally lower than that when mode I frac-
ture dominates.

5. The homogeneous substrate affects the loading pattern of the crack, and consequently the stress intensity
factors at crack tips. But its effect generally is negligible when the crack is small and away from interface,
and it does not change the nature of the crack.

The crack surface openings are shown in Figs. 7 and 8. Fig. 7 depicts the crack surface opening in y1
direction for the crack length a 0/h = 0.20. Fig. 8 shows the corresponding opening in x1 direction. In
Fig. 8, it should be noted that there is no crack displacement in x1 direction when h = 0�, thus, the orien-
tations of the crack are chosen as 4.5�, 45� and 67.5�, respectively. In Fig. 7, the orientations of the crack
are chosen as 0�, 45� and 67.5�. As expected, nonhomogeneity of the material increases the crack opening
on the softer side of the material, while it reduces it on the stiffer side.

It is worth pointing out that although direct comparable experimental results are generally not available,
some researchers have tried to solve the fracture problems of FGMs numerically. FEM is the typical meth-
od employed. Most of these studies are limited to cracks in a single FGM layer. Dolbow and Gosz (2002)
computed mixed-mode stress intensity factors at the tips of arbitrarily oriented cracks in FGM, and the
results were compared with the analytical solutions presented in the paper by Konda and Erdogan
(1994). Good agreement was reported. Kim and Paulino (2002) gave a rather general finite element
modeling of fracture in FGMs, with many interesting numerical results reported in the paper which were
compared with the analytical solutions presented by Erdogan and Wu (1997). Those results are not directly
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Fig. 7. Crack surface openings in the y1 direction for a 0/h = 0.20, h = 0�, 45� and 67.5�.
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Fig. 8. Crack surface openings in the x1 direction for a 0/h = 0.20, h = 0�, 45� and 67.5�.
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comparable to the analytical solutions in this paper, but were used as benchmark tests for the preliminary
study of this paper by Long and Delale being published in the International Journal of Fracture.

It should be noted that the numerical calculations are extremely time consuming. Obtaining one data
point required nearly one week of computational time on a PC. Accordingly more extensive results are
not presented. Given enough time one may compute the stress intensity factors for various values of d,
and under bending and shear loadings.
Appendix A

Expressions of functions defined in the text
R1ðaÞ ¼ ðm4 � m1Þ½ð1þ jÞn1n4 þ ð3� jÞa2� þ iaðn4 � n1Þ½1þ j� ð3� jÞm1m4�
� �

=R0

R2ðaÞ ¼ ðm4 � m2Þ½ð1þ jÞn2n4 þ ð3� jÞa2� þ iaðn4 � n2Þ½1þ j� ð3� jÞm2m4�
� �

=R0

R3ðaÞ ¼ � ðm3 � m1Þ½ð1þ jÞn1n3 þ ð3� jÞa2� þ iaðn3 � n1Þ½1þ j� ð3� jÞm1m3�
� �

=R0

R4ðaÞ ¼ � ðm3 � m1Þ½ð1þ jÞn1n3 þ ð3� jÞa2� þ iaðn3 � n1Þ½1þ j� ð3� jÞm1m3�
� �

=R0

R0ðaÞ ¼ ðm4 � m3Þ½ð1þ jÞn3n4 þ ð3� jÞa2� þ iaðn4 � n3Þ½1þ j� ð3� jÞm3m4�

ð74Þ

f1j ¼ n3m4mjðn4 � njÞ þ n4m3mjðnj � n3Þ þ njm3m4ðn3 � n4Þ

f2j ¼ m4mjðn4 � njÞ þ m3mjðnj � n3Þ þ m3m4ðn3 � n4Þ

f3j ¼ n3m3ðn4 � njÞ þ n4m4ðnj � n3Þ þ njmjðn3 � n4Þ

f4j ¼ m3ðn4 � njÞ þ m4ðnj � n3Þ þ mjðn3 � n4Þ j ¼ 1; 2

ð75Þ
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f1j ¼ �½n1m2mjðn2 � njÞ þ n2m1mjðnj � n1Þ þ njm1m2ðn1 � n2Þ�

f2j ¼ �½m2mjðn2 � njÞ þ m1mjðnj � n1Þ þ m1m2ðn1 � n2Þ�

f3j ¼ �½n1m1ðn2 � njÞ þ n2m2ðnj � n1Þ þ njmjðn1 � n2Þ�

f4j ¼ �½m1ðn2 � njÞ þ m2ðnj � n1Þ þ mjðn1 � n2Þ� j ¼ 3; 4

ð76Þ

Kð1Þ
11 ðy0; aÞ ¼ � iam1ð1þ jÞ � n1ð3� jÞ

ax0ðj� 1Þ ½að3� jÞf22 þ ið1þ jÞf32�en1y
0

þ iam2ð1þ jÞ � n2ð3� jÞ
ax0ðj� 1Þ ½að3� jÞf21 þ ið1þ jÞf31�en2y

0

Kð1Þ
12 ðy0; aÞ ¼ � iam1ð1þ jÞ � n1ð3� jÞ

ax0ðj� 1Þ ðif12 þ af42Þð1þ jÞen1y0

þ iam2ð1þ jÞ � n2ð3� jÞ
ax0ðj� 1Þ ðif11 þ af41Þð1þ jÞen2y0

ð77Þ

Kð1Þ
21 ðy0; aÞ ¼

iam1ðj� 3Þ þ n1ð1þ jÞ
ax0ðj� 1Þ ½að3� jÞf22 þ ið1þ jÞf32�en1y

0

� iam2ðj� 3Þ þ n2ð1þ jÞ
ax0ðj� 1Þ ½að3� jÞf21 þ ið1þ jÞf31�en2y

0

Kð1Þ
22 ðy0; aÞ ¼

iam1ðj� 3Þ þ n1ð1þ jÞ
ax0ðj� 1Þ ðif12 þ af42Þð1þ jÞen1y0

� iam2ðj� 3Þ þ n2ð1þ jÞ
ax0ðj� 1Þ ðif11 þ af41Þð1þ jÞen2y0

ð78Þ

Kð1Þ
31 ðy0; aÞ ¼

ðn1m1 � iaÞ
ax0

½að3� jÞf22 þ ið1þ jÞf32�en1y
0

� ðn2m2 � iaÞ
ax0

½að3� jÞf21 þ ið1þ jÞf31�en2y
0

Kð1Þ
32 ðy0; aÞ ¼

ðn1m1 � iaÞ
ax0

ðif 12 þ af42Þð1þ jÞen1y0

� ðn2m2 � iaÞ
ax0

ðif11 þ af41Þð1þ jÞen2y0

ð79Þ

Kð2Þ
11 ðy0; aÞ ¼ � iam3ð1þ jÞ � n3ð3� jÞ

ax0ðj� 1Þ ½að3� jÞf24 þ ið1þ jÞf34�en3y
0

þ iam4ð1þ jÞ � n4ð3� jÞ
ax0ðj� 1Þ ½að3� jÞf23 þ ið1þ jÞf33�en4y

0

Kð2Þ
12 ðy0; aÞ ¼ � iam3ð1þ jÞ � n3ð3� jÞ

ax0ðj� 1Þ ðif14 þ af44Þð1þ jÞen3y0

þ iam4ð1þ jÞ � n4ð3� jÞ
ax0ðj� 1Þ ðif13 þ af43Þð1þ jÞen4y0

ð80Þ
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Kð2Þ
21 ðy0; aÞ ¼

iam3ðj� 3Þ þ n3ð1þ jÞ
ax0ðj� 1Þ ½að3� jÞf24 þ ið1þ jÞf34�en3y

0

� iam4ðj� 3Þ þ n4ð1þ jÞ
ax0ðj� 1Þ ½að3� jÞf23 þ ið1þ jÞf33�en4y

0

Kð2Þ
22 ðy0; aÞ ¼

iam3ðj� 3Þ þ n3ð1þ jÞ
ax0ðj� 1Þ ðif14 þ af44Þð1þ jÞen3y0

� iam4ðj� 3Þ þ n4ð1þ jÞ
ax0ðj� 1Þ ðif13 þ af43Þð1þ jÞen4y0

ð81Þ

Kð2Þ
31 ðy0; aÞ ¼

ðn3m3 � iaÞ
ax0

½að3� jÞf24 þ ið1þ jÞf34�en3y
0

� ðn4m4 � iaÞ
ax0

½að3� jÞf23 þ ið1þ jÞf33�en4y
0

Kð2Þ
32 ðy0; aÞ ¼

ðn3m3 � iaÞ
ax0

ðif14 þ af44Þð1þ jÞen3y0

� ðn4m4 � iaÞ
ax0

ðif13 þ af43Þð1þ jÞen4y0

ð82Þ

Q31ða; tÞ

¼�
Z 1

�1

�iqm1½ð1þjÞcos2hþð3�jÞsin2h�þn1½ð3�jÞcos2hþð1þjÞsin2h��2ðn1m1� iqÞðj�1Þcoshsinh
qx0ðj�1Þðn1 cosh� iqsinhþ iaÞ

� ½qð3�jÞf22þ ið1þjÞf32�eiqtdq

þ
Z 1

�1

�iqm2½ð1þjÞcos2hþð3�jÞsin2h�þn2½ð3�jÞcos2hþð1þjÞsin2h��2ðn2m2� iqÞðj�1Þcoshsinh
qx0ðj�1Þðn2 cosh� iqsinhþ iaÞ

� ½qð3�jÞf21þ ið1þjÞf31�eiqtdq

þ
Z 1

�1

�iqm3½ð1þjÞcos2hþð3�jÞsin2h�þn3½ð3�jÞcos2hþð1þjÞsin2h��2ðn3m3� iqÞðj�1Þcoshsinh
qx0ðj�1Þðn3 cosh� iqsinhþ iaÞ

� ½qð3�jÞf24þ ið1þjÞf34�eiqtdq

�
Z 1

�1

�iqm4½ð1þjÞcos2hþð3�jÞsin2h�þn4½ð3�jÞcos2hþð1þjÞsin2h��2ðn4m4� iqÞðj�1Þcoshsinh
qx0ðj�1Þðn4 cosh� iqsinhþ iaÞ

� ½qð3�jÞf23þ ið1þjÞf33�eiqtdq ð83Þ

Q32ða; tÞ

¼�
Z 1

�1

�iqm1½ð1þjÞcos2hþð3�jÞsin2h�þn1½ð3�jÞcos2hþð1þjÞsin2h��2ðn1m1� iqÞðj�1Þcoshsinh
qx0ðj�1Þðn1 cosh� iqsinhþ iaÞ

�ðif12þqf42Þð1þjÞeiqtdq

þ
Z 1

�1

�iqm2½ð1þjÞcos2hþð3�jÞsin2h�þn2½ð3�jÞcos2hþð1þjÞsin2h��2ðn2m2� iqÞðj�1Þcoshsinh
qx0ðj�1Þðn2 cosh� iqsinhþ iaÞ

�ðif11þqf41Þð1þjÞeiqtdq

þ
Z 1

�1

�iqm3½ð1þjÞcos2hþð3�jÞsin2h�þn3½ð3�jÞcos2hþð1þjÞsin2h��2ðn3m3� iqÞðj�1Þcoshsinh
qx0ðj�1Þðn3 cosh� iqsinhþ iaÞ

�ðif14þqf44Þð1þjÞeiqtdq

�
Z 1

�1

�iqm4½ð1þjÞcos2hþð3�jÞsin2h�þn4½ð3�jÞcos2hþð1þjÞsin2h��2ðn4m4� iqÞðj�1Þcoshsinh
qx0ðj�1Þðn4 cosh� iqsinhþ iaÞ

�ðif13þqf43Þð1þjÞeiqtdq ð84Þ



3916 X. Long, F. Delale / International Journal of Solids and Structures 42 (2005) 3897–3917
Q41 ¼ �
Z 1

�1

� sin 2hðiqm1 þ n1Þ þ ðn1m1 � iqÞ cos 2h
qx0ðn1 cos h� iq sin hþ iaÞ ½qð3� jÞf22 þ ið1þ jÞf32�eiqt dq

þ
Z 1

�1

� sin 2hðiqm2 þ n2Þ þ ðn2m2 � iqÞ cos 2h
qx0ðn2 cos h� iq sin hþ iaÞ ½qð3� jÞf21 þ ið1þ jÞf31�eiqt dq

þ
Z 1

�1

� sin 2hðiqm3 þ n3Þ þ ðn3m3 � iqÞ cos 2h
qx0ðn3 cos h� iq sin hþ iaÞ ½qð3� jÞf24 þ ið1þ jÞf34�eiqt dq

�
Z 1

�1

� sin 2hðiqm4 þ n4Þ þ ðn4m4 � iqÞ cos 2h
qx0ðn4 cos h� iq sin hþ iaÞ ½qð3� jÞf23 þ ið1þ jÞf33�eiqt dq ð85Þ

Q42 ¼ �
Z 1

�1

� sin 2hðiqm1 þ n1Þ þ ðn1m1 � iqÞ cos 2h
qx0ðn1 cos h� iq sin hþ iaÞ ðif12 þ qf42Þð1þ jÞeiqt dq

þ
Z 1

�1

� sin 2hðiqm2 þ n2Þ þ ðn2m2 � iqÞ cos 2h
qx0ðn2 cos h� iq sin hþ iaÞ ðif11 þ qf41Þð1þ jÞeiqt dq

�
Z 1

�1

� sin 2hðiqm3 þ n3Þ þ ðn3m3 � iqÞ cos 2h
qx0ðn3 cos h� iq sin hþ iaÞ ðif14 þ qf44Þð1þ jÞeiqt dq

�
Z 1

�1

� sin 2hðiqm4 þ n4Þ þ ðn4m4 � iqÞ cos 2h
qx0ðn4 cos h� iq sin hþ iaÞ ðif13 þ qf43Þð1þ jÞeiqt dq ð86Þ

Q51ða; tÞ ¼
1

2pð1þ jÞ

Z 1

�1
� ðsin h� m1 cos hÞ½qð3� jÞf22 þ ið1þ jÞf32�

ðn1 cos h� iq sin hþ iaÞqx0

�

þ ðsin h� m2 cos hÞ½qð3� jÞf21 þ ið1þ jÞf31�
ðn2 cos h� iq sin hþ iaÞqx0

þ ðsin h� m3 cos hÞ½qð3� jÞf24 þ ið1þ jÞf34�
ðn3 cos h� iq sin hþ iaÞqx0

�ðsin h� m4 cos hÞ½qð3� jÞf23 þ ið1þ jÞf33�
ðn4 cos h� iq sin hþ iaÞqx0

�
eiqt dq ð87Þ

Q52ða; tÞ ¼
1

2pð1þ jÞ

Z 1

�1
� ðsin h� m1 cos hÞðif 12 þ qf42Þð1þ jÞ

ðn1 cos h� iq sin hþ iaÞqx0

�

þ ðsin h� m2 cos hÞðif11 þ qf41Þð1þ jÞ
ðn2 cos h� iq sin hþ iaÞqx0

þ ðsin h� m3 cos hÞðif14 þ qf44Þð1þ jÞ
ðn3 cos h� iq sin hþ iaÞqx0

�ðsin h� m4 cos hÞðif13 þ qf43Þð1þ jÞ
ðn4 cos h� iq sin hþ iaÞqx0

�
eiqt dq ð88Þ

Q61ða; tÞ ¼
1

2pð1þ jÞ

Z 1

�1
� ðm1 sin hþ cos hÞ½qð3� jÞf22 þ ið1þ jÞf32�

ðn1 cos h� iq sin hþ iaÞqx0

�

þ ðm2 sin hþ cos hÞ½qð3� jÞf21 þ ið1þ jÞf31�
ðn2 cos h� iq sin hþ iaÞqx0

þ ðm3 sin hþ cos hÞ½qð3� jÞf24 þ ið1þ jÞf34�
ðn3 cos h� iq sin hþ iaÞqx0

�ðm4 sin hþ cos hÞ½qð3� jÞf23 þ ið1þ jÞf33�
ðn4 cos h� iq sin hþ iaÞqx0

�
eiqt dq ð89Þ
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Q62ða; tÞ ¼
1

2pð1þ jÞ

Z 1

�1
� ðm1 sin hþ cos hÞðif12 þ qf42Þð1þ jÞ

ðn1 cos h� iq sin hþ iaÞqx0

�

þ ðm2 sin hþ cos hÞðif11 þ qf41Þð1þ jÞ
ðn2 cos h� iq sin hþ iaÞqx0

þ ðm3j sin hþ cos hÞðif14 þ qf44Þð1þ jÞ
ðn3 cos h� iq sin hþ iaÞqx0

�ðm4 sin hþ cos hÞðif13 þ qf43Þð1þ jÞ
ðn4 cos h� iq sin hþ iaÞqx0

�
eiqt dq ð90Þ
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