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Abstract

In this paper, the plane elasticity problem of an arbitrarily oriented crack in a FGM layer bonded to a homogeneous
half-plane is considered. The problem is modeled by assuming that the elastic properties of the FGM layer are expo-
nential functions of the thickness coordinate and are continuous at the interface of the FGM layer and the half-plane.

The Fourier transform technique is used to reduce the problem to the solution of a system of Cauchy-type singular
integral equations, which are solved numerically. The stress intensity factors are computed for various crack orienta-
tions, crack locations and material parameters. The results show that crack length, crack orientation and the non-
homogeneity parameter of the strip material have significant effect on the fracture of the FGM layer.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

In the recent past, there has been a strong increase in interest in functionally graded materials (FGM:s).
The idea of Functionally Graded Materials initially came from the need of more efficient combustion pro-
cess in many high temperature aerospace applications such as turbines, compressors and combustion cham-
bers. FGMs are essentially two-phase particulate composites whose composition, microstructure and
properties vary gradually. Most FGMs are made from ceramics and metals. Ceramics provide thermal
and corrosion resistance while metals provide the necessary mechanical toughness and heat conductivity.
The volume fractions of the constituents in an FGM usually vary continuously from 100% ceramic at
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the surface to 0% at the interface continuously. The conditions for both high temperature and high tough-
ness can then be met simultaneously. FGMs can be tailored to meet the rigorous requirements encountered
in practice through the design of their constituents. They have great potential for applications in safety-criti-
cal structures such as nuclear fusion reactors, aircraft fuselages, microelectronic devices and biomaterials,
but the greatest area of focus and initial emphasis appear to be in thermal barrier protection for turbines
engines, etc. in high temperature environments.

From the mechanical point of view, FGMs are unique because their mechanical properties vary spa-
tially. This distinctive feature that makes FGMs such promising candidates for advanced technological
applications, happens to create enormous difficulties for those who want to analytically study the fracture
behavior of FGMs. It is well known that if the mechanical properties of the material are not constant, the
governing elasticity equations become partial differential equations with variable coefficients, which com-
plicate the analysis significantly. Except for few idealized cases, most crack problems for FGMs are not
amenable to analytical treatments because of their intrinsic complexities.

Some fracture problems of FGMs have been investigated in the past decade. Delale and Erdogan (1983)
studied mode I crack problem in an infinite non-homogeneous plane, and found that the effect of the
Poisson’s ratio on the stress intensity factors is negligible. Konda and Erdogan (1994) solved the more gen-
eral case of mixed mode crack problem in FGMs. Erdogan and Wu (1997) investigated the mode I crack
problem in a FGM strip, especially for edge cracks. The mode I crack parallel to the boundary of an infinite
strip was solved by El-Borgi et al. (2000), with the Young’s modulus varying exponentially in an arbitrary
direction. Long and Delale (2004) studied the general problem for an unconstrained FGM layer containing
an arbitrarily oriented crack.

Cracks in multilayer materials with at least one layer being nonhomogeneous are studied less extensively,
and most of these works are limited to cracks in the homogeneous planes or interfacial region (Chen and
Erdogan, 1996; Choi, 1996; Choi, 2001; Delale, 1985; Delale and Erdogan, 1988a,b; Erdogan, 1985;
Erdogan et al., 1991; Erdogan et al., 1991; Schovanec and Walton, 1988; Shbeeb and Binienda, 1999; Ueda,
2001). Choi (2001) studied an arbitrarily oriented crack located in a homogeneous semi-infinite substrate
that is bonded to a surface layer through a nonhomogencous interfacial layer, which is the closest to the
problem studied in the current paper.

In this paper, the more general problem of an arbitrarily oriented crack in a FGM layer bonded to a
homogeneous half-plane is studied. The problem is a model for a functionally graded TCB bonded to a
substrate. First, some auxiliary functions are introduced and then the problem is formulated in terms of
a system of Cauchy-type singular integral equations. These equations are solved numerically to obtain
the stress intensity factors at the crack tips.

To make the problem mathematically tractable, the Young’s modulus of the material is assumed to vary
exponentially in the thickness coordinate. The Poisson’s ratio is assumed to be constant.

2. The formulation

The crack problem under consideration is an FGM strip (material 1 in Fig. 1) of thickness /1 containing
an embedded finite crack on the y’ = 0 plane; the strip is bonded to a homogeneous half-plane (material 2
in Fig. 1). In the FGM strip, the material properties vary exponentially in the thickness direction. The
Poisson’s ratio v is constant and the shear modulus is defined by:

i) = me™ or p(x,y) = et (1)
where,

f=0dcosf, y=—5sinb. (2)
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Fig. 1. Crack geometry of the problem.

The Lame constant A(x,y) can be written as
3—«k oy
A - = B+ 3
(X7y) K — 1 wme ( )
with
3 —4v for plane strain

K= 3y (4)
——  for plane stress
I+v

Here, 3 is a constant that describes the nonhomogeneity of the FGM. To simplify the discussion, we assume
0 = 0. p; is the share modulus at x = 0. 6 is the angle between the crack line and x.
The material properties of the half-plane are the same as those of the FGM layer at the interface

E(x)=E; ulx)=p (5)

The problem will be solved under the following boundary and continuity conditions

o ”(x,a +0) =0 '()C/, _O)
’ g 0<x<h (6)
Tx’y’ (X’, +0) = Txlyr (x’, —O)
O-x(+07y) = O-x(iovy)
—00 <y <00 (7)
Txy(“i’oay) = Txy(_ovy)
Gx(hay) = Txy(hmy) =0 — o0 <y <00 (8)
v(x', +0) = v(x', —0)
X <a or X >b and 0<x<h 9)
u(x',+0) = u(x', —
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oy (¥, 0) = py (x')

Tyly (X/, 0) =P (x/)
Here, pi(x') and p,(x’) are given crack surface tractions, which can be determined by solving the elasticity
problem for the uncracked strip under the given external loads.

} a<x <b (11)

2.1. Basic solution for the FGM layer

The solution of the FGM layer is expressed as the sum of two states of strain as | (x’,)’),v|(x’,)') and
uy(x,y) and vi(x,y) where the coordinates (x’,y’) and (x,y) are defined in Fig. 1.
The governing equations for the FGM plane may be expressed as

o' Ouy O du| ouy o v,
1 -1 ! -1 ! —K)=—==0
ot D+ (= D T4 200 4 et DG4 - ) (G 30 455 - 0 5 "
GRY vy o, ou| ouy v v,
—1)—! 1 p — — Ly 1L H—L=0
(0= D g e D+ 23 =) Gt Bl 1) (G + 5 ) + 6+ D
Assuming, }(x',)’) and v} (x',)/) as
1 > / —iox’
uy (x',)) = 2n/ U, a)e™ du
o (13)
un(,)) = ! / 1404 oc)e’i“"' do
X,y Y Vs
Substituting expressions (13) into Egs. (12) and after some manipulations, we get
4 4
UW,o) =Y mFi(a)e™ V(/,0)=) Fx)e" (14)
=1 =1
where Fj(«) are unknown functions and m; (j = 1,...,4) are given by
. _ (e — 1
m, — [2a;+ﬁ(K 3)|n; +ioyp(x — 1) ' =14 (15)
(k= nd + (< — Dy — (< + D)+ 1B)a
while n; (j=1,...,4) are the roots of
2 L - 0\12 K ip N2
™+ yn —ola +iB)] +-—— (ay —ifn)” = 0 (16)
The values of n; are
A /B A +iady) Ay B A+ k)
n—=——_/—— ny = ———
2 2 2 2 (17)
VA& A+ i) Ay B4R+ i)
ny=——-+ ng=——+
2 2 2 2
where
3—«x 3—«k
A=y+P/)/—— A3=9—p/——
1= B\/KJrl =77 B\ )
3—«k 3—«k
A = —1 1
2= P AP
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Since «, and v/ must vanish for x* + y* — oo, we have

Fi(a) = F4(0) =0, »>0

(19)
Fi(o) =F(0) =0, »<0
Using generalized Hooke’s Law, we obtain
oo [+1 L
o () K—l / Z —iam;(1 4+ k) + n;(3 — x)]F;()e"” ™ do
oo I+l o
7,7 / S ooy (3 — 1) + (1 + 1)) () do (20)

00 =t

oo I+1
njy —io’
Ty (¥, )) Zn/ E [nm; — (o)e” do

where /=1 for y >0 and /=3 for y <0.
From the continuity conditions (6) and Egs. (20), we find

F3(o) = Ry (0)F1 () + Ra(a)Fa(o),  Fa(er) = Rs(a) 1 (o) + Ra(2)F(2) (21

where R{(«) are known functions given in Appendix A.
We then introduce the following auxiliary functions:

/ 0 ’t 1t /
gl(x):7[111()(7,4—0)—141()(7,—0)], a<|x |<b

/
o @)
g,(xX) = &[v'l(x',—i—()) -0 (*,=0)], a<|x|<b
We can express F; (j=1,...,4) in terms of these auxiliary functions as
Fo— /0O [2(3 = &) fo +1(1 + K)f2lgy + (12 + ofa2) (1 + K)g, o df
! oo (1 + K)oy
Fr— /OO [2(3 = ) /o1 +i(1 + 1) falgs + (ifnn +ofa)(1 + K)g, e di
2 . (1 + K)oy (23)
oo /oo [2(3 — k) foa +1(1 + &) f3a]gy + (f1a + 2faa) (1 + K)g5 e dy
} e (1 + K)amg
_ * B =)o +i(1 + K)faslgy + (i 13 + afas) (1 4+ K6)gy
F4 = — e dt
o (1 + K)awy
where f;; (i=1,...,4; j=1,...,4) are known functions given in Appendix A, and
Wy = (ml — mz)(n’l3 — 7}14)(1’11}12 + n3n4) + (m1 — I’}’l4)(WZ2 — m3)(n2n3 + n1n4)
- (m1 - I’I’I';)(mz - m4)(n1n3 + n2n4) (24)

Substituting F; (j = 1,...,4) back into Eq. (20), we can express o,,, ¢}, and 1., in terms of g; and g, for
y' >0, as
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ux,y
o) L[ zhl, ¥, g, 0 de

'x’
o,y “ y /th, X,y t)g(t)dt (25)

fi,ly),(x’,y’ 1+K / Zhgj ¥,y t)g;(t)dt
where
kj X, y0) / K e dey, k=1,2; j=12 (26)

and Kkj (,0) (k=1,2;j =1,2) are known functions given in Appendix A.
Similarly, when y" <0, g, ¢, and 7,,, can be written as

o,y /Zhl, X,y 0)g (1) dt

x7
<2( 7y 'u y / ZhZJ 7y tgj )d (27)

e

X)( ?y 1+K / ZhS/ 7y tgj )d
where
) o - 2) ¢,y io(t—x") _ . P
(xvyvt)— Kkj (y,oc)e dOC’ k_ 1a27 j_ 1527

and K,(j) (V,0)(k=1,2; j=1,2) are known functions given in the Appendix A.
In the (x,y) coordinate system, the Navier’s equations for the FGM layer may be expressed as

o%u, Fu; 0 duy vy
(K+1)6—+(K_1)W+266 +o(k+1)— - +0(3—K)— 3 =0 o)
R v Ou ov
-1)— [ PRI Sl B TR Y (e =0
(ic )ax2 + (x+ )ay2 +27) 3 +0(x )(ax+ ay)
Assuming
1 [~ A
) =5 / gA(%)e e do
. (29)
vy (x,y) = 7 / A(x)ee ™ da
and substituting Egs. (29) into (28), we obtain the characteristic equation as
[(k+1)p* — (k= 1)o? +8(k + 1Vplg —ia2p + 63— k)] =0 (a) (30)

(k= 1)p* +3(k — )p— (kK + 1)o? —iag2p + 5(k — 1)] =0 (b)
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solving Eq. (30), we have:

(k=1D(p;+0)p; — (kK + 1)o?
7= 2i[2p, + 0(kc— 1)] ’

Defining @ = 64/(3 — x)/(1 4+ x), and using Eq. (31), Eq. (30) yield the roots p as

j=1,...,4

o 1 .
plz—z—i\/52+4az2+4lwo¢
o 1
n=-5"3 0% + 4o® — diwo
o 1 /3 T
p3:f§+§\/5 + 4o + diwo
o 1 .
P=-5+3 0% + 4o — diwo

Thus, Egs. (29) become

1 ~c 4 '
up(x,y) = 7 / Z quj(ot)ep/xe*my du
- 5
1 oo 4 )
vmw:ﬂ/ > Ay(w)erre ™ dy
0 5

Then, the corresponding stresses are obtained as

®) _ x—ioy g,

Ox 27r (r — 1 / Z [(1+K)p;q; + (x — 3)iod;(ar)e” da
(3 ,vaio(

ay 27r (1 — 1 / Z 1+ k)io+ (3 — 1)p;q,)A;(a)e” ™ dot

3) xy / ZD’ IOCC]j el iocyda

3903

(32)

The stress state at a given point in the FGM plane can be expressed as the sum of the stresses given by Egs.

(34) and Egs. (25) or (27), depending on the sign of )’ at that point.
From the free boundary conditions (8) of the problem at x =/, we have

4

Z[a+k>p,-q,-+<x—3>ia]A_/<a>eﬂfh=ﬁ; | oyng

J

where

0,(a,1) Z{fu (o, £)cos?0 + fzj(oc f)sin*0) — 253/(05 t)cos 0sin 0}

i=

C,S.)(oc, t) = / K,S.) (ycos O — hsin 0, p)elr-rsind=heosO)+iny 4y, q
htan0

htan
éﬁj)(a, t) = / / K,(;) (ycos 0 — hsin 0, p)elr-rsind=heosO)+inr 4, q
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and

Z@mq et =S [ oy mng 0

where

2
0,;(a, Z { (cos?0) — sinzﬁ)ég?(oc, t) — [5;;)(% t) — é(l;)(fx, £)] sin 0 cos 9}

i=1

2.2. The solution for the half-plane

For the half-plane, Navier’s equations in terms of displacements u, and v, may be expressed as

62u2 621,{2 621)2

621,72 621]2 62u2
—122 No2 4222

(e —1) Ox? + e+ 1) 0y? + Ox0y

For y <0, assuming uy(x,y) and v,(x,y) in the following form:

1 A
mmwzﬂ/‘m@mvww

1 [~ -
X y) = E / HQ(X, oc)ef'“ydoc

and substituting into (40), we get

i (x,y) = i / " | = | {Gl( )+ <x _ %) Gz(oc)}e“”i“ydoc

1 o0 4
U2(x7y) = ﬂ / G (O() _A'_xGZ(O()e\x\xfmyda

o0

From generalized Hooke’s law, the stresses for the half-plane are obtained as

i

0'2x=2n

|:2OC(G1 + sz) -

—00

% (1 + K) G2:| e|a<|x7io<y do

1 [ )
Oy = _% / |:20C(G1 +XG2) —+ ‘%:l (3 — K)G2:| e\i\x—my da

ty = 21 [ 2] | (Gr+xGs) + (1 — 1) Gl dy

(42)

(43)
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3. The integral equations

Using the continuity conditions (7) and (10), we get following relations:

SI(1 + k)pyg; + (i — 3)is, (e) - i[ZaGl - %(1 + K)Gz] (k — 1)

J

I—K
= /Q:ﬁ;utgj
Jj=

Zhv 20,4, ~ 2| 2] Gy + (1 - 0)G) = 1+KZ/Q4,g, a
>0~ 2 |60~ 56| = X [ oymng )
S 4we =G0 =Y [0y )

where Qya, ) (k=3,...,6; j=1,2) are known functions shown in Appendix A.

With Eqgs. (35), (38), (44), (45), (46) and (47) we have six equations for the six unknowns A(j = 1,...

and G(j = 1,2):
4

Z[(l +k)pg; + (k — 3)ic]A;(o)e?" 2n1 1_+KK Z / 0,,(o,1)g,(1)

Z[p ing 4, (2)e" = 5 1+K2/Qﬂtgj

4

Z[(l +k)p;q; + (k. — 3)io]d; (o) — i[2ocG1 -

J

%(1 +;<)G2] (k1)

l —x
27r1+;cj /Q3](xtgj

Z[p b0, (o) = 2|21 G + (1 = W) = 5 /Q4]g, ar

- ol
>S9 - |a|[G<a> 6] = Z/Qs, 18,0

4
ZA, e — G (u Z/Qwoctgj

J

Solving Eqs. (48) we can obtain A(a) (j =1,...,4) and Gi(a), Gx(a).
From the boundary conditions

Oy, (x1, +0> =D (xl)a Txiyy (xla +0) :pz(xl) (a<x< b)

3905

(46)

(47)

4)

(48)

(49)
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where pi(x;) and p,(x;) are the crack surface tractions, we obtain
V) (x1,0) + sin* 06 (x; cos 0, x; sin 0) + cos* 051" (x; cos 0, x; sin 0)
— 2sinf0cos 01<3)(x1 cos 0, x; sin 0) = p, (x;)
x1,0) + 710 (x; cos 0, x; sin 0) (cos?0 — sin’6)

au), (

+ sin 0 cos 0[a? o, )(x1 cos 0, x; sin 0) — a¥) (x; cos 0, x; sin 0)] = p,(x;)

To obtain the asymptotic behavior of the stresses, first we rewrite the first equation of (50) as

xl, (x1 0030 x1 sm@
271'1+K / ZhZJ xl? gl dt+ / Z{ +kquj

+(rc — 3)iafsin®0 + [—(1 + k)ix + (3 — )quj]cos 0
—2sin 0 cos 0(ic — 1)[p; — iog;] }A;(a)err 31500 doy = p (x;)
Since the asymptotic value of K>, and K5, for « — oo are
K5 =0

K;; — | % | —|oc|y

Eq. (51) yields,

%/ {’—xl ka )+ o, 0l ()}dt 2(;(;,16(3)1’1(?61)

with the kernels

1
K (e, 0) = g ) (01,0,1)

12 (x1,7) 4/ 22 }L%Kzg(o o)]e™ ) da

kg?(xb

/ Z{ + k)p,g; + (i — 3)ie]sin’0

+[=(1 + k)i + (3 - K)p,ql]cos 0
—2sinfcos O(x — 1)[p; — iog,]} Cyy(ar, 1)@l 030 xusing gy

Similarly, the second equation of Eq. (50) becomes

%/ {t_xl+z (x1,7) )(xl,t)]gj(t)}dt:2(;(:'17;2)172&1)

K—l

Jj=1

where

1
k3 (v, ) = S B (31,0, 1)

4
e |
K2, = 1 / [K“><0, %) — lim K1Y (0, 2] da
oo 4
k(z? (x1,2) 20 — sin®0) (i — D[p, —iog)]

—o0

+2sin 0 cos 9( K)[ux + p,q;] } Ciil, 1)ePrt o307 masind

(56)
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From Egs. (22), we obtain the single valuedness conditions to complete the formulation of the problem

b
/ g ()di=0, j=1, (57)

4. The numerical solution

To obtain stress intensity factors at the crack tips, the Cauchy-type singular integral equations are solved
numerically.
First, we define
b—a b+a
2 T
b—a b+a
s+

2 2

g1(t) = ¢1(r) (1) = ¢,(r) (58)
pix1) = fils)  py(xr) = fals)

w(x1,0) =m(s,0)

=

X1 =

b_
qﬁj”)(s,r):Takﬁﬁ(xl,t) (i=1,2, j=12 n=1.2)

Then, the integral equations (53) and (55) can be normalized as

L éa(n) = (1) _ (I+x)
- /71 {:‘F ;[qu (s,7) + a5 (s,7)];(r) p dr = 2m(s70)f1(5) (59)
L i) | = o @ _ (1+x)
- /_1 {r—er ;[‘IU (s,7) + q5; (s,7)];(r) ¢ dr = 2m(s70)f2(s) (60)
The fundamental solution of these equations is of the form given by Golberg (1990) and Peters (1963)
1
W) = s (61)

and thus the unknowns ¢(r) and ¢,(r) may be expressed in terms of Chebyshev polynomials of the first
kind as follows:

1 N
_ (1)
r) = E T, (r) —l1<r<1
(f)l() /_1—}"2”:0 n ()
| N (62)
r) = AT —l1<r<l
hilr) = s T

where ¢ and ¢ (n=0,1,2...) are unknown constants. Using the single valuedness condition (57) and
considering the orthogonality conditions of 7,(r), it can be shown that

c(()l) =0

c((f) =0

(63)
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Substituting (62) into (59) and (60), we obtain

icr(zl)Un—l( ii/ 22: [ql/ 5,7) + g5 (s, r)]c(’) L) g,

1 —#2

(1+x)
-1 1
2m(s,0)f1( ) <s<
2 (64)
00 1 00 1 T (l")
DU, i (s) + = / s,r) + s,7) |V L dr
;n 1() 7'[; ljzl{qu( ) q2j( )] m
(14+x)
= -1 1
(s, O)fz(s) <s <
Eq. (64) can be solved by truncating the series and choosing the collocation points s,, as
Tu(s,) =0 sn:cos((2n—1)2N) n=1,...,N (65)

After determining ¢V and ¢, the stress intensity factors at the crack tips may be expressed as (Konda and
Erdogan, 1994)

b—a2u(a,0) &
_ ) _1 n (1)
ki(a) > 1k ;( )'e
b—a2u(a,0) &
ky(a) = ’ —1)"c?
o0 =\ D
(66)
_ b—a2u(b,0) - (1)
fa(b) = - 2 14k ;C"
_frap.0) &
ka(b) = 2 14k ;c”
and the crack surface openings as
u(xy, +0) — u(x, —0) = —/(a? — x?) Z—c U,.1(x'/d)
(67)
v(xy, +0) — v(x1, —0) = —/(a”> — x? Z —c (x'/d")
where
b—a
f = 68
d =2 (68)
is the half-crack length and
, b+a

X =x- 3 (69)
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5. Results and discussion

Different crack lengths and orientations are used to calculate the stress intensity factors at the crack tips.
In all cases, the loading is uniform strain at infinity, that is:

& (x, £00) = & (70)
The crack surface tractions for this loading can be written as

dxcos 0

8u,e

D1 (X],O) == ﬁaocoszll
8,[1 gdxcost (71)
P (x1,0) = —ﬁsocosﬂsiné)

For various crack lengths, the calculations are carried out with 0 varying from 0° to near 90°. All the stress
intensity factors are normalized by

K(] = 60\/(7 (72)
where o is the normalizing stress and is defined as
_ 8
0o = 1+ KSO (73)

Fig. 2 shows the stress intensity factors for a crack with «'/h = 0.05 and 6 = 0.03. The solid lines indicate
the stress intensity factors for an inclined crack in an FGM strip bonded to a homogeneous half-plane,
while the dashed lines show the stress intensity factors for a crack in an FGM strip. As can be seen in
Fig. 2, in this case, the difference between the two sets of results is negligible. This is largely due to the fact
that the crack length is very small compared to the thickness of the strip. Thus, the perturbation brought
upon by the homogeneous half-plane is not significant. However, as will be shown later, this effect will be-
come more pronounced as the crack length increases.

| | | |

ey Kq(b) Inclined crack in a FGM strip

. ——— bonded to a semi-infinite
\\A homogeneous plane L

ffffffff Inclined crack in a FGM strip

K/Ky

0.0 0.1 0.2 0.3 0.4 0.5
Angle: 6/nt

Fig. 2. Variation of the normalized stress intensity factors K/K, with 0/n for an embedded inclined crack in an FGM strip and an
FGM strip bonded to a homogeneous half-plane under uniform strain, a’/h = 0.05.
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Figs. 3-6 shows the stress intensity factors for cracks with varying crack lengths, for '/
h=0.10,0.15,0.20 and 0.25, respectively. It can be observed that as the crack length increases, the differ-
ence between the stress intensity factors for an FGM strip and an FGM strip bonded to a homogeneous
half-plane becomes more perceptible. But the trend of the variation of the intensity factors with respect
to the crack angle remains the same.

47 R K,(b) Inclined crack in a FGM strip
B - ————— bonded to a semi-infinite
\A h
. omogeneous plane
\ ffffffff Inclined crack in a FGM strip|

K/Kq

2

0.0 0.1 0.2 0.3 0.4 0.5
Angle: 6/nt

Fig. 3. Variation of the normalized stress intensity factors K/K, with 6/z for an embedded inclined crack in an FGM strip and an
FGM strip bonded to a homogeneous half-plane under uniform strain, a’/h = 0.10.

s K,(b) Inclined crack in a FGM strip
e, ——— bonded to a semi-infinite
4 N
\A homogeneous plane
\A
Ky(@) \A ffffffff Inclined crack in a FGM strip
3 N [
KIK, f—8 \A\
o o
~
9 \A

< N
1 _m=d— Se i o
P N ~
N
Ky(a) ~.,
Ty W
0 T T T T
0.0 0.1 0.2 0.3 0.4 05
Angle: 6/t

Fig. 4. Variation of the normalized stress intensity factors K/K, with 0/n for an embedded inclined crack in an FGM strip and an
FGM strip bonded to a homogeneous half-plane under uniform strain, a'/h = 0.15.
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5-1 74— K,(b) Inclined crack in a FGM strip |-
N bonded to a semi-infinite
N QA homogeneous plane
4 — \A —
&A ******** Inclined crack in a FGM strip
K@)

0 T T T

0.0 0.1 0.2 0.3
Angle: 6/nt

0.5

Fig. 5. Variation of the normalized stress intensity factors K/K, with 6/z for an embedded inclined crack in an FGM strip and an
FGM strip bonded to a homogeneous half-plane under uniform strain, a’/h = 0.20.

67 —a - Ky(b) Inclined crack in a FGM strip [~
— o — Py
S bonded to a semi-infinite
AN homogeneous plane
5 A\ -
\ S Inclined crack in a FGM strip
4 NN L
K /K,

3 -
2 -
1 -
0 —£

0.0 0.1 0.2 0.3 0.4 0.5

Angle: 6/t

Fig. 6. Variation of the normalized stress intensity factors K/K, with 6/ for an embedded inclined crack in an FGM strip and an
FGM strip bonded to a homogeneous half-plane under uniform strain, a'/h = 0.25.

From the results shown above, we can reach several important conclusions:

1. The square-root nature of the stress singularity is well maintained at the crack tips of cracks in FGM layer.
2. The stress intensity factors for mode / crack (K;(«) andK;(b)) decrease when increasing 0, while the stress
intensity factors for mode I7 crack, first increase and then decrease as the crack angle increases. The
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stress intensity factors (K), are always greater than (K5), in the beginning, when the problem is mostly
under mode I deformation. After 6 increases to a given point, (K;); become smaller than (K5),, because
mode I7 loading starts to dominate. This trend is not affected by the length of the crack.

3. Due to the existence of the nonhomogeneous nature of the material, for the parameter chosen the stress
intensity factors increase significantly when the crack becomes longer.

4. In most cases, mode [ fracture introduces larger stress concentration at crack tips. When mode II frac-
ture dominates, the magnitude of the stress concentration is generally lower than that when mode I frac-
ture dominates.

5. The homogeneous substrate affects the loading pattern of the crack, and consequently the stress intensity
factors at crack tips. But its effect generally is negligible when the crack is small and away from interface,
and it does not change the nature of the crack.

The crack surface openings are shown in Figs. 7 and 8. Fig. 7 depicts the crack surface opening in y,
direction for the crack length a'/h = 0.20. Fig. 8 shows the corresponding opening in x; direction. In
Fig. 8, it should be noted that there is no crack displacement in x; direction when 6 = 0°, thus, the orien-
tations of the crack are chosen as 4.5°, 45° and 67.5°, respectively. In Fig. 7, the orientations of the crack
are chosen as 0°, 45° and 67.5°. As expected, nonhomogeneity of the material increases the crack opening
on the softer side of the material, while it reduces it on the stiffer side.

It is worth pointing out that although direct comparable experimental results are generally not available,
some researchers have tried to solve the fracture problems of FGMs numerically. FEM is the typical meth-
od employed. Most of these studies are limited to cracks in a single FGM layer. Dolbow and Gosz (2002)
computed mixed-mode stress intensity factors at the tips of arbitrarily oriented cracks in FGM, and the
results were compared with the analytical solutions presented in the paper by Konda and Erdogan
(1994). Good agreement was reported. Kim and Paulino (2002) gave a rather general finite element
modeling of fracture in FGMs, with many interesting numerical results reported in the paper which were
compared with the analytical solutions presented by Erdogan and Wu (1997). Those results are not directly

15 = 9:00 -

6=45°
10 ~

6=675"

0 T T T
-1.0 -0.5 0.0 0.5 1.0

X4

Fig. 7. Crack surface openings in the y; direction for a’/h = 0.20, 0 = 0°, 45° and 67.5°.
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| | |

6=45"

6=675°

0=45°

0 T T T
1.0 05 0.0 0.5 1.0

X4

Fig. 8. Crack surface openings in the x; direction for a'/h = 0.20, 0 = 0°, 45° and 67.5°.

comparable to the analytical solutions in this paper, but were used as benchmark tests for the preliminary
study of this paper by Long and Delale being published in the International Journal of Fracture.

It should be noted that the numerical calculations are extremely time consuming. Obtaining one data
point required nearly one week of computational time on a PC. Accordingly more extensive results are
not presented. Given enough time one may compute the stress intensity factors for various values of 9,
and under bending and shear loadings.

Appendix A

Expressions of functions defined in the text

Ri(2) = {(mg —m))[(1 + ©)ming + (3 — 1)o?] + ioe(ng — my)[1 + 1 — (3 — €)ymyma] } /Ry
Ry(or) = {(m4 — my)[(1 + K)mang + (3 — k)o’’] + iot(ng — ma)[1 + k — (3 — k)mamy] } /Ry
Ry(2) = —{(ms — m))[(1 + &)mins + (3 — w)o?] + ia(ns — ny)[1 + i — (3 — &)myms) } /Ry (74)
Ry(or) = —{(m3y — m)[(1 + ©)nins + (3 — k)o] +ia(ns — m)[1 + x — (3 — x)mims] } /Ry
()

flj — n3m4mj(n4 _ nj) —|— n4m3mj(n‘,- — n3) + njn’l3WZ4(n3 - n4)
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